

# Rigorous Analysis and Design of Anti-Reflective Moth-Eye Structures

#### **Abstract**



The suppression of reflection at surfaces of components is of interest for numerous optical applications. One very interesting approach to controlling the reflection at surfaces is the use of anti-reflective nano- and micro-structures, which are motivated by nature (moth-eye). These structures with feature sizes in the subwavelength domain exhibit unique properties concerning wavelength and angular dependency. In this document, the analysis and design of deterministic anti-reflective structures in VirtualLab Fusion is presented.

# **Design Task**



#### input plane wave

wavelength 532nm

anti-reflection

moth-eye structure

 normal & oblique incidence

### **Connected Modeling Techniques: Moth-Eye Structure**



#### Available modeling techniques for microstructures:

| Methods                                | Preconditions                                  | Accuracy  | Speed     | Comments                                                                                                                           |
|----------------------------------------|------------------------------------------------|-----------|-----------|------------------------------------------------------------------------------------------------------------------------------------|
| Functional<br>Approach                 | -                                              | low       | very high | diffraction angles acc. to grating equation; manual efficiencies                                                                   |
| Thin Element<br>Approximation<br>(TEA) | smallest features > $\sim 10\lambda$           | high      | very high | inaccurate for larger NA and thick elements; x-domain                                                                              |
|                                        | smallest features < ~2λ                        | low       | very high |                                                                                                                                    |
| Fourier Modal<br>Method (FMM)          | period < $\sim$ (5 $\lambda \times 5\lambda$ ) | very high | high      | rigorous solution; fast for<br>structures and periods similar to<br>the wavelength; more demanding<br>for larger periods; k-domain |
|                                        | period > $\sim$ (15 $\lambda$ × 15 $\lambda$ ) | very high | slow      |                                                                                                                                    |



Due to the small feature sizes (in the order of magnitude of the wavelength), the **Fourier Modal Method (FMM)** provides a very accurate and fast solution and hence is used for the analysis.

#### **Grating Order Analyzer**



The *Grating Order Analyzer* can be used to investigate the order efficiencies of any given grating. Find more information under:





**Grating Order Analyzer** 

### Field Inside Component Analyzer: FMM



With the *Field Inside Component Analyzer: FMM*, the propagated field can be displayed in various planes inside the moth-eye structure. Find more information under:

Field Inside Component Analyzer: FMM



#### **Parameter Run**



To analyze the behavior in the tolerance range envisaged for the device, a parameter sweep is performed with the Parameter Run document.

More information under:

<u>Usage of the Parameter Run Document</u>



#### **Parametric Optimization**



Then, the grating structure can be optimized using the in-built *Parametric Optimization*. A reflection efficiency of 0 (to minimize this value) is used as target for the optimization.

More information under:

Introduction to the Parametric Optimization Document



# **Simulation Results**

#### Reference Measurement by Calculator

In this example, we want to minimize the reflection at the surface of a substrate, which consists of PMMA (polymethylmethacrylat).

The Fresnel Effects Calculator can be used to get information of the reflectance and transmittance at an interface between air and PMM (3.93% without any anti-reflection).

Learn more about the *Fresnel Effects Calculator* under:

Fresnel Curves on a Plane Surface



#### **Field Inside Structure**



An investigation of the field distribution reveals, that most of the light seems to be reflected by the bottom part or the structure. Hence, in a next step, the parameters are further improved by optimization.

The structure inspired by a moth-eye reduces the reflection by a factor of ten. When using the mentioned parameters, the resulting reflectance is 0.38%.



incident field



reflected field

#### Scanning over Parameter Space for Initial Solutions



A parameter sweep is performed in order to find an adequate initial solution for the optimization.



#### Parametric Optimization for Initial Solution #1



# **Performance Analysis of Final Design #1**



#### Parametric Optimization for Initial Solution #2



## Performance Analysis of Final Design #1



#### **Document Information**

| title            | Rigorous Analysis and Design of Anti-Reflective Moth-Eye Structures                                                                                                                                                                                                           |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| document code    | GRT.0011                                                                                                                                                                                                                                                                      |  |  |
| document version | 2.0                                                                                                                                                                                                                                                                           |  |  |
| software edition | <ul><li>VirtualLab Fusion Standard</li><li>Grating Package</li></ul>                                                                                                                                                                                                          |  |  |
| software version | 2023.2 (Build 1.242)                                                                                                                                                                                                                                                          |  |  |
| category         | Feature Use Case                                                                                                                                                                                                                                                              |  |  |
| further reading  | <ul> <li>Thin Element Approximation (TEA) vs. Fourier Modal Method (FMM) for Grating Modeling</li> <li>Parametric Optimization and Tolerance Analysis of Slanted Gratings</li> <li>Field Inside Component Analyzer: FMM</li> <li>Fresnel Curves on a Plane Surface</li> </ul> |  |  |