

Optimization of Grating Incoupler for Lightguides/Waveguides

Abstract

Lightguide or waveguide-based systems have proven to be a good approach for many AR/VR applications. To achieve high performance for these types of applications, it is necessary that the gratings involved exhibit a high degree of uniformity with respect to different angles of incidence while simultaneously maximizing the overall efficiency across the entire field of view (FOV). The Parameter Variation Analyzer in VirtualLab Fusion allows the user to analyze system performance for a given field of view, automatically calculating the corresponding merit functions. In addition, the integrated Parametric Optimization facilitates the determination of the optimal grating structure by adjusting parameters such as fill factor, modulation depth and tilt angle.

Simulation Task: Slanted Grating

set of plane waves

- field of view (-15°...15° along x and y axis) (*)
- wavelength 532nm
- linearly polarized along x-axis

incoupling grating

- slanted grating
- period: 400nm
- operation order: +1
- transmission grating
- surrounding medium: $n^{air} = 1.0$
- refractive index glass: $n^{lg} = 2.0$

(*) internally the different angles of the FOV ("modes") are modeled by tilting the grating accordingly

optimization parameters

- fill factor: 10% 90%
- modulation depth: 50nm 600nm
- slant angle: 0° 60°

merit function (*Parameter Variation Analyzer*):

- mean efficiency (to be maximized)
- uniformity error (to be minimized)

Connected Modeling Techniques: Incoupling Grating

Available modeling techniques for microstructures:

Methods	Preconditions	Accuracy	Speed	Comments
Functional Approach	-	low	very high	diffraction angles acc. to grating equation; manual efficiencies
Thin Element Approximation (TEA)	smallest features > $\sim 10\lambda$	high	very high	inaccurate for larger NA and thick
	smallest features < $\sim 2\lambda$	low	very high	elements; x-domain
Fourier Modal Method (FMM)	period < ~ $(5\lambda \times 5\lambda)$	very high	high	rigorous solution; fast for structures and periods similar to
	period > ~ ($15\lambda \times 15\lambda$)	very high	slow	the wavelength; more demanding for larger periods; k-domain

Due to the grating period is smaller than the wavelength of light a rigorous treatment of the grating is inevitable, as other solvers like **Thin Element Approximation** (TEA) become inaccurate. Hence, the Fourier Modal Method (FMM) is used to calculate the diffraction efficiency rigorously.

Grating Order Analyzer

The *Grating Order Analyzer* can be used to investigate the efficiency of the diffraction orders of a given grating. Find more information under:

Grating Order Analyzer

resulting efficiency provided in the *Detector Results* tab:

Edit Grating Order Analyzer Edit Grating Order Analyzer × X General Single Orders General Single Orders **Output for Evaluated Directions** Order Selection Strategy Transmission Order Range Order Collections Selection Strategy V Single Order Output Reflection X V Incident Wave 1 🚔 0 1 Minimum Order 1 0 🜲 Maximum Order General Output Coordinates Summed Transmission, Absorption, and Reflection Spherical Angles Cartesian Angles Polar Diagram (Angle α Only) Wave Vector Components Positions Efficiencies Rayleigh Coefficients C Ex □ Ey Ez TE () TM OK Cancel Help OK Cancel Help

Parameter Variation Analyzer

Since diffraction efficiencies for a range of angles (FOV) of incidence have to be evaluated for each set of grating parameters, the *Parameter Variation Analyzer* is used to calculate the overall merit functions which are later used in the parametric optimization.

For more information, see: Parameter Variation Analyzer

merit functions:

mean efficiency – to be maximized: $\eta_{\text{mean}} = \frac{\sum_{i}^{n} \eta_{i}}{n}$ uniformity contrast (of diffraction efficiency) – to be minimized: $u = \frac{\eta_{\text{max}} - \eta_{\text{min}}}{\eta_{\text{max}} + \eta_{\text{min}}}$,

with η_i the transmission efficiency of diffraction order +1 for a single angle of the field of view (α_i , β_i).

Parametric Optimization

Now, the grating can be optimized using the in-built *Parametric Optimization*. A mean efficiency of 100% (to maximize this value) und contrast of 0% (to minimize this value) are used as target values for the merit function.

	Constraint Host			Constra	int Name	Use Wei	aht Cons	traint Type	Value 1	Value 2	Start \	Value (Contributio
				Stack #	1		1 Rang		10 %	90 %	,	50 %	0
"General Grating" (# 1)			Stack #1	1	 Image: A set of the set of the	1 Rang	•	50 nm	600 nm	40	00 nm	C	
			Stack #	1	<u>~</u>	1 Rang	•	0°	60°		20°	(
"Parameter Variation Analyzer" (# 801) (Mean Efficiency & Uniformity Contrast)			mean ef	ficiency	<u>~</u>	1 Targe	t Value	100 %		63	3.32 %	16.13	
			uniform	ity		1 Targe	t Value	0 %		83	3.63 %	83.87	
tart or stop the optimization	routine. The results are shown in	the tab	ble.										
ptimization Results tart or stop the optimization Go!	routine. The results are shown in	the tab	ole.				Simulatic	Step					
timization Results art or stop the optimization Go!	routine. The results are shown in Subdetector	the tab	ole. 186	187	188	18!	Simulatic	n Step 0 19	1	192	193	19	4
timization Results tart or stop the optimization Got etector ptimizer Logging	routine. The results are shown in Subdetector Target Function Value	185 5945	ale. 186 0.076928	187 0.076928	188 0.076945	18	Simulatic 11 0.07692	n Step 0 19 3 0.07694	1 0.0769	192 928 0.0	193 76928	19 0.076942	4 2 0.0769
timization Results tart or stop the optimization Got etector ptimizer Logging	routine. The results are shown in Subdetector Target Function Value Fill Factor (Bottom) ("General	185 5945 24 %	186 0.076928 67.724 %	187 0.076928 67.724 %	188 0.076945 67.724 %	18 0.076928 67.724 %	Simulatic) 19 0.07692 67.724	n Step 0 19 3 0.07694 6 67.724 9	1 2 0.0769 5 67.724	192 928 0.0° 9% 67,	193 76928 724 %	19- 0.076942 67.724 %	4 2 0.0769 6 67.724
bitimization Results tart or stop the optimization Got Got etector ptimizer Logging arameter Constraints	routine. The results are shown in Subdetector Target Function Value Fill Factor (Bottom) ("General Slant Angle ("General Gratin	185 5945 24 % 712*	186 0.076928 67.724 % 27.712*	187 0.076928 67.724 % 27.712*	188 0.076945 67.724 % 27.712°	189 0.076928 67.724 % 27.712'	Simulatic 0.07692 67.724 27.71:	n Step 0 19 3 0.07694 6 67.724 9 * 27.712	1 2 0.0769 5 67.724 • 27.7	192 928 0.0 1% 67. 12* 21	193 76928 724 % 7.712*	19 0.076942 67.724 % 27.712	4 2 0.0769 6 67.724 * 27.7
bitimization Results tart or stop the optimization Got Got etector ptimizer Logging arameter Constraints	routine. The results are shown in Subdetector Target Function Value Fill Factor (Bottom) ("General Slant Angle ("General Gratin z-Extension ("General Gratin	185 5945 24 % 712°	186 0.076928 67.724 % 27.712° 422.59 nm	187 0.076928 67.724 % 27.712* 422.59 nm	188 0.076945 67.724 % 27.712° 422.59 nm	188 0.076928 67.724 % 27.712' 422.59 nm	Simulatic 0.07692 67.724 27.712 422.59 n	n Step 0 19 8 0.07694 6 67.724 9 27.712 1 422.59 nr	1 0.0769 5 67.724 • 27.7 1 422.59	192 128 0.0' 128 67. 12° 2: nm 422.	193 76928 724 % 7.712* 59 nm	19 0.076942 67.724 % 27.712 422.59 nm	4 0.0769 6 67.724 • 27.7 n 422.59
timization Results art or stop the optimization Got etector ptimizer Logging arameter Constraints Parameter Variation	routine. The results are shown in Subdetector Target Function Value Fill Factor (Bottom) ("General Slant Angle ("General Gratin z-Extension ("General Gratin mean efficiency	185 5945 24 % 712° nm 46 %	186 0.076928 67.724 % 27.712* 422.59 nm 75.241 %	187 0.076928 67.724 % 27.712* 422.59 nm 75.241 %	188 0.076945 67.724 % 27.712° 422.59 nm 75.246 %	188 0.076928 67.724 % 27.712' 422.59 nm 75.241 %	Simulatic 0.07692 67.724 27.71 422.59 n 75.241	n Step 0 19 3 0.07694 6 67.724 9 • 27.712 n 422.59 nr 6 75.248 9	1 0.0769 6 67.724 • 27.7 • 422.59 5 75.241	192 128 0.0' 128 67. 12° 27 12° 37 12° 37 12	193 76928 724 % 7.712* 59 nm 2241 %	19 0.076942 67.724 % 27.712 422.59 nm 75.248 %	4 2 0.0769 6 67.724 1 422.59 6 75.241

More information under: Introduction to the Parametric Optimization Document

Optimization Result 1 – Uniformity Contrast for Weights of 1

initial design:

- modulation depth: 400.00nm
- fill factor: 50.00%
- slant angle: 20.00°
- mean efficiency: 63.32%
- uniformity contrast: 83.63%

For the optimized grating structure, the distinct contrast between the left and right part of the FOV is flattened.

- modulation depth: 422.59nm
- fill factor: 67.72%
- slant angle: 27.71°
- mean efficiency: 75.24%
- uniformity contrast: 12.50%

Optimization Result 1 – Mean Efficiency for Weights of 1

initial design:

- modulation depth: 400.00nm
- fill factor: 50.00%
- slant angle: 20.00°

• mean efficiency: 63.32%

• uniformity contrast: 83.63%

This particular optimization not only improves the uniformity, but also increases overall efficiency.

- modulation depth: 422.59nm
- fill factor: 67.72%
- slant angle: 27.71°
- mean efficiency: 75.24%
- uniformity contrast: 12.50%

Optimization Result 2 – Uniformity Contrast – Increased Weight

initial design:

- modulation depth: 400.00nm
- fill factor: 50.00%
- slant angle: 20.00°
- mean efficiency: 63.32%
- contrast: 83.63%

The weight of constraints can be adjusted based on specific requirements. In this example, achieving optimal uniformity is prioritized at the detriment of attaining maximum efficiency.

- modulation depth: 274.13nm
- fill factor: 73.79%
- slant angle: 20.91°
- mean efficiency: 34.61%
- contrast: 3.98%

Optimization Result 2 – Mean Efficiency

initial design:

- modulation depth: 400.00nm
- fill factor: 50.00%
- slant angle: 20.00°

• mean efficiency: 63.32%

• uniformity contrast: 83.63%

The distinct improvement in uniformity comes with a sacrificed mean efficiency.

- modulation depth: 274.13nm
- fill factor: 73.79%
- slant angle: 20.91°
- mean efficiency: 34.61%
- uniformity contrast: 3.98%

title	Optimization of Grating Incoupler for Lightguides/Waveguides
document code	LGC.0003
document version	2.0
required packages	Grating Package
software version	2023.2 (Build 2.30)
category	Application Use Case
further reading	 <u>Grating Order Analyzer</u> <u>Parameter Variation Analyzer</u> <u>Introduction to the Parametric Optimization Document</u>